Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(4)2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37107659

RESUMEN

The genus Limonium Mill. (sea lavenders) includes species with sexual and apomixis reproductive strategies, although the genes involved in these processes are unknown. To explore the mechanisms beyond these reproduction modes, transcriptome profiling of sexual, male sterile, and facultative apomictic species was carried out using ovules from different developmental stages. In total, 15,166 unigenes were found to be differentially expressed with apomictic vs. sexual reproduction, of which 4275 were uniquely annotated using an Arabidopsis thaliana database, with different regulations according to each stage and/or species compared. Gene ontology (GO) enrichment analysis indicated that genes related to tubulin, actin, the ubiquitin degradation process, reactive oxygen species scavenging, hormone signaling such as the ethylene signaling pathway and gibberellic acid-dependent signal, and transcription factors were found among differentially expressed genes (DEGs) between apomictic and sexual plants. We found that 24% of uniquely annotated DEGs were likely to be implicated in flower development, male sterility, pollen formation, pollen-stigma interactions, and pollen tube formation. The present study identifies candidate genes that are highly associated with distinct reproductive modes and sheds light on the molecular mechanisms of apomixis expression in Limonium sp.


Asunto(s)
Apomixis , Arabidopsis , Plumbaginaceae , Apomixis/genética , Plumbaginaceae/genética , Óvulo Vegetal/genética , Perfilación de la Expresión Génica , Reproducción/genética , Arabidopsis/genética
3.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834624

RESUMEN

Drought is a major constraint to plant growth and productivity worldwide and will aggravate as water availability becomes scarcer. Although elevated air [CO2] might mitigate some of these effects in plants, the mechanisms underlying the involved responses are poorly understood in woody economically important crops such as Coffea. This study analyzed transcriptome changes in Coffea canephora cv. CL153 and C. arabica cv. Icatu exposed to moderate (MWD) or severe water deficits (SWD) and grown under ambient (aCO2) or elevated (eCO2) air [CO2]. We found that changes in expression levels and regulatory pathways were barely affected by MWD, while the SWD condition led to a down-regulation of most differentially expressed genes (DEGs). eCO2 attenuated the impacts of drought in the transcripts of both genotypes but mostly in Icatu, in agreement with physiological and metabolic studies. A predominance of protective and reactive oxygen species (ROS)-scavenging-related genes, directly or indirectly associated with ABA signaling pathways, was found in Coffea responses, including genes involved in water deprivation and desiccation, such as protein phosphatases in Icatu, and aspartic proteases and dehydrins in CL153, whose expression was validated by qRT-PCR. The existence of a complex post-transcriptional regulatory mechanism appears to occur in Coffea explaining some apparent discrepancies between transcriptomic, proteomic, and physiological data in these genotypes.


Asunto(s)
Coffea , Coffea/genética , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Carbono/metabolismo , Resistencia a la Sequía , Proteómica , Café/genética , Sequías , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Mol Phylogenet Evol ; 180: 107699, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36621583

RESUMEN

The comparison of closely related taxa is cornerstone in biology, as understanding mechanisms leading up to differentiation in relation to extant shared characters are powerful tools in interpreting the evolutionary process. Hotspots of biodiversity such as the west-Mediterranean, where many lineages meet are ideal grounds to study these processes. We set to explore the interesting example of Sooty Copper butterflies: widespread Eurasian Lycaena tityrus (Poda, 1761) comes into contact in Iberia with closely related and local endemic, L. bleusei (Oberthür, 1884), which hasn't always been considered a distinct species. An integrative analysis was designed, combining the use of extensive molecular data (five genes), geometric morphometrics analyses, verified and up-to-date distribution data, and environmental niche modelling, aimed at deciphering their true relationship, their placement within European Lycaena and trace their evolutionary history. We revealed several levels of differentiation: L. bleusei and L. tityrus appear to be reciprocally monophyletic independent gene-pools, distinct in all genes analysed, having mutually diverged 4.8 Ma ago. L. tityrus but not L. bleusei, further displays a genetic structure compatible with several glacial refugia, where populations assignable to infraspecific taxa surface. Conversely, L. bleusei shows a loss in mtDNA diversity in relation to nuDNA. Morphological analyses differentiate both species according to size and shape but also discriminate strong seasonal and sexual traits and a geographical phenotype segregation in L. tityrus. Finally, updated distribution and its modelling for current and glacial timeframes reveal both species respond differently to environmental variables, defining a mostly parapatric distribution and an overlapping belt where sympatry was recovered. During the last glacial maximum, a wider expansion in L. bleusei distribution explains current isolated populations. Our study highlights the importance of gathering several lines of evidence when deciphering the relationships between closely related populations in the fringe of cryptic species realm.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Filogenia , Cobre , Evolución Biológica , Biodiversidad , Especiación Genética
5.
BMC Plant Biol ; 23(1): 34, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36642719

RESUMEN

BACKGROUND: Sea-lavenders (Limonium Mill., Plumbaginaceae) are a cosmopolitan group of diploid and polyploid plants often adapted to extreme saline environments, with a mostly Tethyan distribution, occurring in the Mediterranean, Irano-Turanian, Euro-Siberian and in the New World. The halophylic Limonium vulgare polyploid complex in particular, presents a large distribution throughout extreme salt-marsh habitats and shows little morphological but high taximetric variation, frequently blurring species delimitation. In this work we pursue three main goals: assert whether SNP data from polyploid individuals has the resolution to distinguish the seven sampled species, to better understand how genetically structured Limonium vulgare is, and attempt to identify specific molecular mechanisms for the differentiation between L. maritimum and L. vulgare. For this purpose, 95 individuals were genotyped using Genotyping by Sequencing (GBS), which were assembled as two independent datasets using IPYRAD. All analyses performed downstream of assembly were fully automated. Phylogenetic inference, PCA, and admixture plots were used to infer answers to the study's main goals. RESULTS: Close to 10,000 SNPs were obtained for each dataset. Phylogenetic analyses reveal that polyploid data can be used to infer species relationships. Population structure analyses suggest a genetically structured L. vulgare. A set of 34 SNPs were found to be fully segregated between L. vulgare and L. maritimum, two of which are potentially linked to proteins that might be involved in the speciation process. CONCLUSION: Despite polyploid data analyses shortcomings, GBS generated SNPs have the resolution to discern all seven included species. Limonium vulgare revealed pronounced genetic structure along a geographical north-south cline. L. maritimum always appears as a distinct genetic entity. Segregated SNPs between L. vulgare and L. maritimum indicate salinity response and morphological trait control genes as potentially interesting to follow up for studying these species' divergence process.


Asunto(s)
Lavandula , Plumbaginaceae , Filogenia , Plumbaginaceae/genética , Polimorfismo de Nucleótido Simple/genética , Variación Genética , Poliploidía , Genómica
6.
J Evol Biol ; 36(2): 461-479, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36514855

RESUMEN

Divergence in acoustic signals may have a crucial role in the speciation process of animals that rely on sound for intra-specific recognition and mate attraction. The acoustic adaptation hypothesis (AAH) postulates that signals should diverge according to the physical properties of the signalling environment. To be efficient, signals should maximize transmission and decrease degradation. To test which drivers of divergence exert the most influence in a speciose group of insects, we used a phylogenetic approach to the evolution of acoustic signals in the cicada genus Tettigettalna, investigating the relationship between acoustic traits (and their mode of evolution) and body size, climate and micro-/macro-habitat usage. Different traits showed different evolutionary paths. While acoustic divergence was generally independent of phylogenetic history, some temporal variables' divergence was associated with genetic drift. We found support for ecological adaptation at the temporal but not the spectral level. Temporal patterns are correlated with micro- and macro-habitat usage and temperature stochasticity in ways that run against the AAH predictions, degrading signals more easily. These traits are likely to have evolved as an anti-predator strategy in conspicuous environments and low-density populations. Our results support a role of ecological selection, not excluding a likely role of sexual selection in the evolution of Tettigettalna calling songs, which should be further investigated in an integrative approach.


Asunto(s)
Hemípteros , Animales , Filogenia , Hemípteros/genética , Vocalización Animal , Flujo Genético , Acústica , Evolución Biológica
7.
Plants (Basel) ; 11(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36365395

RESUMEN

Climate change and the accelerated rate of population growth are imposing a progressive degradation of natural ecosystems worldwide. In this context, the use of pioneer trees represents a powerful approach to reverse the situation. Among others, N2-fixing actinorhizal trees constitute important elements of plant communities and have been successfully used in land reclamation at a global scale. In this study, we have analyzed the transcriptome of the photosynthetic organs of Casuarina glauca (branchlets) to unravel the molecular mechanisms underlying salt stress tolerance. For that, C. glauca plants supplied either with chemical nitrogen (KNO3+) or nodulated by Frankia (NOD+) were exposed to a gradient of salt concentrations (200, 400, and 600 mM NaCl) and RNA-Seq was performed. An average of ca. 25 million clean reads was obtained for each group of plants, corresponding to 86,202 unigenes. The patterns of differentially expressed genes (DEGs) clearly separate two groups: (i) control- and 200 mM NaCl-treated plants, and (ii) 400 and 600 mM NaCl-treated plants. Additionally, although the number of total transcripts was relatively high in both plant groups, the percentage of significant DEGs was very low, ranging from 6 (200 mM NaCl/NOD+) to 314 (600 mM NaCl/KNO3+), mostly involving down-regulation. The vast majority of up-regulated genes was related to regulatory processes, reinforcing the hypothesis that some ecotypes of C. glauca have a strong stress-responsive system with an extensive set of constitutive defense mechanisms, complemented by a tight mechanism of transcriptional and post-transcriptional regulation. The results suggest that the robustness of the stress response system in C. glauca is regulated by a limited number of genes that tightly regulate detoxification and protein/enzyme stability, highlighting the complexity of the molecular interactions leading to salinity tolerance in this species.

8.
PeerJ ; 10: e13565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35729909

RESUMEN

Quercus suber L. is a sclerophyllous tree species native to the western Mediterranean, a region that is considered highly vulnerable to increased temperatures and severe dry conditions due to environmental changes. Understanding the population structure and demographics of Q. suber is essential in order to anticipate whether populations at greater risk and the species as a whole have the genetic background and reproductive dynamics to enable rapid adaptation. The genetic diversity of Q. suber has been subject to different studies using both chloroplast and nuclear data, but population structure patterns remain unclear. Here, we perform genetic analyses on Q. suber using 13 nuclear microsatellite markers, and analysed 17 distinct locations across the entire range of the species. Structure analyses revealed that Q. suber may contain three major genetic clusters that likely result from isolation in refugia combined with posterior admixture and putative introgression from other Quercus species. Our results show a more complex structure scenario than previously inferred for Q. suber using nuclear markers and suggest that different southern populations contain high levels of genetic variation that may contribute to the resilience of Q. suber in a context of environmental change and adaptive pressure.


Asunto(s)
Quercus , Quercus/genética , Núcleo Celular/genética , Repeticiones de Microsatélite/genética , Árboles/genética
9.
Phytopathology ; 112(9): 1998-2011, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35322716

RESUMEN

The devastating disease coffee leaf rust, caused by Hemileia vastatrix, has been a major constraint to worldwide coffee production. Recently, H. vastatrix populations were shown to be structured into three divergent genetic lineages with marked host specialization (C1, C2, and C3). However, there is yet no overall understanding of the population dynamics and adaptation of the most widespread and epidemiological relevant H. vastatrix group (C3). We used restriction site-associated DNA sequencing to generate 13,804 single nucleotide polymorphisms (SNPs) across a worldwide collection of 99 H. vastatrix isolates. Phylogenetic analyses uncovered a well-supported structuring within C3, with three main subgroups (SGs; SGI, SGII, and SGIII), which seem to reflect the historical distribution, breeding, and exchange of coffee cultivars. SGI shows a ladder-like diversification pattern and occurs across all four continents sampled, SGII is mainly restricted to Africa, and SGIII is observed only in Timor, revealing a higher genetic differentiation. Outlier and association tests globally identified 112 SNPs under putative positive selection, which impacted population structure. In particular, 29 overlapping SNPs per se seemed to have an extremely strong effect on H. vastatrix population divergence. We also found exclusive and fixed alleles associated with the SGs supporting local adaptation. Functional annotation revealed that transposable elements may play a role in host adaptation. Our study provides a higher-resolution perspective on the evolutionary history of H. vastatrix on cultivated coffee, showing its strong ability to adapt and the strength of the selective force imposed by coffee hosts, which should be taken into account when designing strategies for pathogen dissemination control and selective breeding.


Asunto(s)
Basidiomycota , Coffea , Basidiomycota/genética , Coffea/microbiología , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/microbiología
10.
PeerJ ; 9: e11425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34131518

RESUMEN

Understanding patterns of population differentiation and gene flow in insect vectors of plant diseases is crucial for the implementation of management programs of disease. We investigated morphological and genome-wide variation across the distribution range of the spittlebug Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Auchenorrhyncha, Aphrophoridae), presently the most important vector of the plant pathogenic bacterium Xylella fastidiosa Wells et al., 1987 in Europe. We found genome-wide divergence between P. spumarius and a very closely related species, P. tesselatus Melichar, 1899, at RAD sequencing markers. The two species may be identified by the morphology of male genitalia but are not differentiated at mitochondrial COI, making DNA barcoding with this gene ineffective. This highlights the importance of using integrative approaches in taxonomy. We detected admixture between P. tesselatus from Morocco and P. spumarius from the Iberian Peninsula, suggesting gene-flow between them. Within P. spumarius, we found a pattern of isolation-by-distance in European populations, likely acting alongside other factors restricting gene flow. Varying levels of co-occurrence of different lineages, showing heterogeneous levels of admixture, suggest other isolation mechanisms. The transatlantic populations of North America and Azores were genetically closer to the British population analyzed here, suggesting an origin from North-Western Europe, as already detected with mitochondrial DNA. Nevertheless, these may have been produced through different colonization events. We detected SNPs with signatures of positive selection associated with environmental variables, especially related to extremes and range variation in temperature and precipitation. The population genomics approach provided new insights into the patterns of divergence, gene flow and adaptation in these spittlebugs and led to several hypotheses that require further local investigation.

11.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803866

RESUMEN

Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 °C and at two supra-optimal temperatures (37 °C, 42 °C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 °C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 °C. Although eCO2 helped to release stress, 42 °C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42°C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 °C) than previously assumed.


Asunto(s)
Dióxido de Carbono/farmacología , Coffea/genética , Diploidia , Regulación de la Expresión Génica de las Plantas , Poliploidía , Temperatura , Transcriptoma/genética , Coffea/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Genotipo , Fotosíntesis/efectos de los fármacos , Transcriptoma/efectos de los fármacos
12.
J Evol Biol ; 34(6): 910-923, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33484040

RESUMEN

Climate change is impacting locally adapted species such as the keystone tree species cork oak (Quercus suber L.). Quantifying the importance of environmental variables in explaining the species distribution can help build resilient populations in restoration projects and design forest management strategies. Using landscape genomics, we investigated the population structure and ecological adaptation of this tree species across the Mediterranean Basin. We applied genotyping by sequencing and derived 2,583 single nucleotide polymorphism markers genotyped from 81 individuals across 17 sites in the studied region. We implemented an approach based on the nearest neighbour haplotype 'coancestry' and uncovered a weak population structure along an east-west climatic gradient across the Mediterranean region. We identified genomic regions potentially involved in local adaptation and predicted differences in the genetic composition across the landscape under current and future climates. Variants associated with temperature and precipitation variables were detected, and we applied a nonlinear multivariate association method, gradient forest, to project these gene-environment relationships across space. The model allowed the identification of geographic areas within the western Mediterranean region most sensitive to climate change: south-western Iberia and northern Morocco. Our findings provide a preliminary assessment towards a potential management strategy for the conservation of cork oak in the Mediterranean Basin.


Asunto(s)
Adaptación Biológica , Cambio Climático , Quercus , Ecosistema , Interacción Gen-Ambiente , Región Mediterránea , Modelos Estadísticos , Polimorfismo de Nucleótido Simple
13.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287164

RESUMEN

As atmospheric [CO2] continues to rise to unprecedented levels, understanding its impact on plants is imperative to improve crop performance and sustainability under future climate conditions. In this context, transcriptional changes promoted by elevated CO2 (eCO2) were studied in genotypes from the two major traded coffee species: the allopolyploid Coffea arabica (Icatu) and its diploid parent, C. canephora (CL153). While Icatu expressed more genes than CL153, a higher number of differentially expressed genes were found in CL153 as a response to eCO2. Although many genes were found to be commonly expressed by the two genotypes under eCO2, unique genes and pathways differed between them, with CL153 showing more enriched GO terms and metabolic pathways than Icatu. Divergent functional categories and significantly enriched pathways were found in these genotypes, which altogether supports contrasting responses to eCO2. A considerable number of genes linked to coffee physiological and biochemical responses were found to be affected by eCO2 with the significant upregulation of photosynthetic, antioxidant, and lipidic genes. This supports the absence of photosynthesis down-regulation and, therefore, the maintenance of increased photosynthetic potential promoted by eCO2 in these coffee genotypes.


Asunto(s)
Dióxido de Carbono/metabolismo , Coffea/genética , Coffea/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Presión del Aire , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Genotipo , Anotación de Secuencia Molecular
14.
BMC Genet ; 21(1): 36, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209049

RESUMEN

Following publication of the original article [1], it has been brought to the authors' attention that in their paper (Rodrigues et al. 2016) they reported the genome size based on 2C values (diploid genome) when it is more common to present it as 1C value.

15.
Sci Rep ; 10(1): 4063, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132605

RESUMEN

Resolution of population structure represents an effective way to define biological stocks and inform efficient fisheries management. In the present study, the phylogeography of the protogynous sparid Spondyliosoma cantharus, in the East Atlantic and Mediterranean Sea, was investigated with nuclear (S7) and mitochondrial (cytochrome b) DNA markers. Significant divergence of four regional genetic groups was observed: North Eastern Atlantic, Mediterranean Sea, Western African Transition (Cape Verde) and Gulf of Guinea (Angola). The two southern populations (Cape Verde and Angola) each comprised reciprocally monophyletic mtDNA lineages, revealed low levels of diversity in Cape Verde and high diversity for Angola despite being represented by only 14 individuals. A complete divergence between North Atlantic and Mediterranean populations was depicted by the mitochondrial marker, but a highly shared nuclear haplotype revealed an incomplete lineage sorting between these regions. Bayesian skyline plots and associated statistics revealed different dynamics among the four regions. Cape Verde showed no expansion and the expansion time estimated for Angola was much older than for the other regions. Mediterranean region seems to have experienced an early population growth but has remained with a stable population size for the last 30000 years while the North Atlantic population has been steadily growing. The lack of genetic structuring within these regions should not be taken as evidence of demographic panmixia in light of potential resolution thresholds and previous evidence of intra-regional phenotypic heterogeneity.


Asunto(s)
ADN Mitocondrial/genética , Bases de Datos de Ácidos Nucleicos , Haplotipos , Dorada/genética , Animales , Filogeografía , Dorada/clasificación
16.
Biodivers Data J ; 8: e47502, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31992947

RESUMEN

BACKGROUND: Here we present the data obtained from the samples collected as part of a large research project (MACDIV) which aims at understanding the drivers of spider (Araneae) community assembly in Macaronesian islands. To obtain the data, we applied the sampling protocol COBRA (Conservation Oriented Biodiversity Rapid Assessment), in twelve 50 m x 50 m native forest plots and five dry habitat plots on the island of Madeiraand in 5 dry habitat plots on the island of Porto Santo. Through this publication, we contribute to the knowledge of the arachnofauna of the Madeiran archipelago. NEW INFORMATION: From the samples that we collected, we obtained a total of 14,902 specimens, of which 49% were adults (7,263). We identified these specimens to 87 species and 18 morphospecies (undescribed), belonging to 26 families. Species of the family Linyphiidae dominated the samples, with 24 (morpho)species. Out of the 105 recorded (morpho)species, 34 were endemic, 26 native non-endemic, 22 introduced and 23 species of unknown origin. We report seven new records of possibly recently introduced species in the Madeiran archipelago. We also present 21 new records for Madeira island and 32 for Porto Santo (33 for the whole archipelago).

17.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174340

RESUMEN

Over the previous decades, numerous studies focused on how oceanic islands have contributed to determine the phylogenetic relationships and times of origin and diversification of different endemic lineages. The Macaronesian Islands (i.e., Azores, Madeira, Selvagens, Canaries, and Cabo Verde), harbour biotas with exceptionally high levels of endemism. Within the region, the vascular plants and reptiles constitute two of the most important radiations. In this study we compare relevant published phylogenetic data and diversification rates retrieved within Cabo Verde endemic lineages and discuss the importance of choosing appropriate phylogeny-based methods to investigate diversification dynamics on islands. From this selective literature-based review, we summarize the software packages used in Macaronesian studies and discuss their adequacy considering the published data to obtain well-supported phylogenies in the target groups. We further debate the importance of Next Generation Sequencing (NGS), to investigate the evolutionary processes of diversification in the Macaronesian Islands. Analysis of genomic data provides phylogenetic resolution for rapidly evolving species radiations, suggesting a great potential to improve the phylogenetic signal and divergence time estimates in insular lineages. The most important Macaronesian reptile radiations provide good case-studies to compare classical phylogenetic methods with new tools, such as phylogenomics, revealing a high value for research on this hotspot area.


Asunto(s)
Biodiversidad , Genómica/métodos , Filogenia , Reptiles/clasificación , Animales , Cabo Verde , Especiación Genética , Genómica/normas , Metaanálisis como Asunto , Reptiles/genética
18.
Evol Appl ; 12(4): 679-691, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30976302

RESUMEN

Human-mediated introductions of species may have profound impacts on native ecosystems. One potential impact with largely unforeseen consequences is the potential admixture of introduced with autochthonous species through hybridization. Throughout the world, bumblebees have been deliberately introduced for crop pollination with known negative impacts on native pollinators. Given the likely allochthonous origin of commercial bumblebees used in Portugal (subspecies Bombus terrestris terrestris and B. t. dalmatinus), our aim was to assess their putative introgression with the native Iberian subspecies B. terrestris lusitanicus. We analysed one mitochondrial gene, cytochrome c oxidase subunit I (COX1) and genomic data involving thousands of genome-wide restriction-site-associated DNA markers (RAD-seq). In the mitochondrial COX1 analyses, we detected one relatively common haplotype in commercial bumblebees, also present in wild samples collected nearby the greenhouses where the commercial hives are used. In the RAD-seq analysis, we found a clear genetic differentiation between native and commercial lineages. Furthermore, we detected candidate hybrids in the wild, as well as putatively escaped commercial bumblebees, some of which being potentially fertile males. Although we cannot assess directly the fitness effects of introgressed alleles, there is a risk of maladaptive allele introgression to the local bumblebee subspecies, which can negatively impact autochthon populations. One immediate recommendation to farmers is for the proper disposal of hive boxes, after their use in greenhouses, so as to minimize the risk of escapees contaminating native populations. On the other hand, the feasibility of using local subspecies B. t. lusitanicus, preferably with local production, should be evaluated.

19.
Glob Chang Biol ; 25(1): 337-350, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30358018

RESUMEN

Species respond to global climatic changes in a local context. Understanding this process, including its speed and intensity, is paramount due to the pace at which such changes are currently occurring. Tree species are particularly interesting to study in this regard due to their long generation times, sedentarism, and ecological and economic importance. Quercus suber L. is an evergreen forest tree species of the Fagaceae family with an essentially Western Mediterranean distribution. Despite frequent assessments of the species' evolutionary history, large-scale genetic studies have mostly relied on plastidial markers, whereas nuclear markers have been used on studies with locally focused sampling strategies. In this work, "Genotyping by sequencing" is used to derive 1,996 single nucleotide polymorphism markers to assess the species' evolutionary history from a nuclear DNA perspective, gain insights into how local adaptation is shaping the species' genetic background, and to forecast how Q. suber may respond to global climatic changes from a genetic perspective. Results reveal (a) an essentially unstructured species, where (b) a balance between gene flow and local adaptation keeps the species' gene pool somewhat homogeneous across its distribution, but still allowing (c) variation clines for the individuals to cope with local conditions. "Risk of Non-Adaptedness" (RONA) analyses suggest that for the considered variables and most sampled locations, (d) the cork oak should not require large shifts in allele frequencies to survive the predicted climatic changes. Future directions include integrating these results with ecological niche modeling perspectives, improving the RONA methodology, and expanding its use to other species. With the implementation presented in this work, the RONA can now also be easily assessed for other organisms.


Asunto(s)
Adaptación Biológica , Variación Genética , Quercus/genética , Selección Genética , África del Norte , Genotipo , Región Mediterránea , Análisis de Secuencia de ADN
20.
Zootaxa ; 4369(1): 144-150, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29689902

RESUMEN

The meadow spittlebug, Philaenus spumarius (L.) (Hemiptera, Aphrophoridae) is a widespread insect species in the Holarctic region, exhibiting a dorsal colour balanced polymorphism. In the Azores the species is known from high elevations in Terceira and São Miguel islands. A sample of 235 individuals from Pico da Vara and Graminhais protected areas (São Miguel, Azores) (between 645 and 935 m a.s.l.), collected in 2000 and 2017, showed a remarkable high frequency of the melanic morphs flavicollis (FLA) and quadrimaculatus (QUA). In addition, a high frequency of melanics was observed in males. We explore the hypotheses for the origin of Azorean colonization and for the high proportion of melanism in the Azorean populations.


Asunto(s)
Hemípteros , Animales , Azores , Pradera , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...